Ocean Acidification: Surface pH - Climate Model: SSP1 (Sustainability) - 2015 - 2100
Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Categories
- People: Human Impact
- Water: Life, Human Impact, Chemistry
- Keywords
- Acidification
- Anthropogenic Emissions
- Carbon Cycle
- Carbon Dioxide
- Climate
- Climate Models
- Coral
- Emissions
- Marine Ecosystems
- Ocean Acidificaiton
- Ocean Climate
- Oceans
- pH
Description
Permalink to DescriptionWhat are Climate Models?
Permalink to What are Climate Models?Climate and Earth system models are used for a variety of purposes - from the study of dynamics of the weather and climate system of the past to projecting future climate. These models simulate the physics, chemistry and biology of the atmosphere, land and oceans, and require massive supercomputers to generate climate projections.
An international team of climate scientists, economists and earth systems modelers have built a range of new "pathways" that examine how global society, demographics and economics might change over the next century. They are collectively known as the "Shared Socioeconomic Pathways" (SSPs). World Climate Research Programme climate modeling working group, through international science coordination and partnerships, designed the framework for these climate models to inform the Intergovernmental Panel on Climate Change Sixth Assessment Report, AR6.
NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) has created several fully coupled climate and earth system models that can utilize the SSPs to glimpse into the future. Global climate models represent the planet as millions of grid boxes and then solve mathematical equations to calculate how energy is transferred between those boxes using the laws of thermodynamics. If done correctly, these models of how energy is cycled through all parts of the planet can be used to estimate dozens of environmental variables (winds, temperature, moisture, ocean acidification, etc.). The models are tested by simulating historical conditions and then matching the results to our historical observational records. If the models can adequately recreate the past, they are then run forward in time to project what may happen in the future.
What is Ocean Acidification
Permalink to What is Ocean AcidificationIn this dataset, surface pH is shown as projected by the SSP1 scenario, using GFDL’s ESM4 model between 2015 and 2100. SSP1-1.9 is a very low greenhouse gas emissions scenario where carbon dioxide emissions cut to net zero around 2050. The resolution of the climate model is 1/4 degree for the oceans and 1 degree for the atmosphere.
Ranging from 0 to 14, pH is a scale that describes the acid and base properties of a solution. The ocean's surface has an average pH of around 8.1, which is slightly basic. The pH of the open ocean is relatively stable in both time and space; however, the uptake of carbon dioxide by the ocean has caused measurable changes in seawater. Ocean acidification is an often overlooked consequence of humankind's release of carbon dioxide emissions into the atmosphere from fossil fuel burning. Excess carbon dioxide enters the ocean and reacts with water to form carbonic acid, which decreases ocean pH (i.e., makes seawater less basic), and lowers carbonate ion concentrations.
Organisms such as corals, clams, oysters, and some plankton use carbonate ions to create their shells and skeletons. Decreases in carbonate ion concentration will make it difficult for these creatures to form hard structures, particularly for juveniles. Ocean acidification may cause some organisms to die, reproduce less successfully, or leave an area. Other organisms such as seagrass and some plankton species may do better in oceans affected by ocean acidification because they use carbon dioxide to photosynthesize, but do not require carbonate ions to survive. Ocean ecosystem diversity and ecosystem services may therefore change dramatically from ocean acidification.
Although the pH changes appear small, pH is on a log scale meaning that a change of one unit represents an order of magnitude change in the acidity of the seawater. Ocean acidification, a lowering of ocean pH, has the potential to significantly impact marine ecosystems by the end of this century.
For more information on understanding SSPs we found this carbonbrief.org article very informative.
SSP Narratives for each Emission Scenario
Permalink to SSP Narratives for each Emission Scenario(Note: OnlySSP1, SSP2 and SSP5 are available on SOS)
SSP1 Sustainability – Taking the Green Road (Low challenges to mitigation and adaptation)
Permalink to SSP1 Sustainability – Taking the Green Road (Low challenges to mitigation and adaptation)The world shifts gradually, but pervasively, toward a more sustainable path, emphasizing more inclusive development that respects perceived environmental boundaries. Management of the global commons slowly improves, educational and health investments accelerate the demographic transition, and the emphasis on economic growth shifts toward a broader emphasis on human well-being. Driven by an increasing commitment to achieving development goals, inequality is reduced both across and within countries. Consumption is oriented toward low material growth and lower resource and energy intensity.
SSP2 Middle of the Road (Medium challenges to mitigation and adaptation)
Permalink to SSP2 Middle of the Road (Medium challenges to mitigation and adaptation)The world follows a path in which social, economic, and technological trends do not shift markedly from historical patterns. Development and income growth proceeds unevenly, with some countries making relatively good progress while others fall short of expectations. Global and national institutions work toward but make slow progress in achieving sustainable development goals. Environmental systems experience degradation, although there are some improvements and overall the intensity of resource and energy use declines. Global population growth is moderate and levels off in the second half of the century. Income inequality persists or improves only slowly and challenges to reducing vulnerability to societal and environmental changes remain.
SSP3 Regional Rivalry – A Rocky Road (High challenges to mitigation and adaptation)
Permalink to SSP3 Regional Rivalry – A Rocky Road (High challenges to mitigation and adaptation)A resurgent nationalism, concerns about competitiveness and security, and regional conflicts push countries to increasingly focus on domestic or, at most, regional issues. Policies shift over time to become increasingly oriented toward national and regional security issues. Countries focus on achieving energy and food security goals within their own regions at the expense of broader-based development. Investments in education and technological development decline. Economic development is slow, consumption is material-intensive, and inequalities persist or worsen over time. Population growth is low in industrialized and high in developing countries. A low international priority for addressing environmental concerns leads to strong environmental degradation in some regions.
SSP4 Inequality – A Road Divided (Low challenges to mitigation, high challenges to adaptation)
Permalink to SSP4 Inequality – A Road Divided (Low challenges to mitigation, high challenges to adaptation)Highly unequal investments in human capital, combined with increasing disparities in economic opportunity and political power, lead to increasing inequalities and stratification both across and within countries. Over time, a gap widens between an internationally-connected society that contributes to knowledge- and capital-intensive sectors of the global economy, and a fragmented collection of lower-income, poorly educated societies that work in a labor intensive, low-tech economy. Social cohesion degrades and conflict and unrest become increasingly common. Technology development is high in the high-tech economy and sectors. The globally connected energy sector diversifies, with investments in both carbon-intensive fuels like coal and unconventional oil, but also low-carbon energy sources. Environmental policies focus on local issues around middle and high income areas.
SSP5 Fossil-fueled Development – Taking the Highway (High challenges to mitigation, low challenges to adaptation)
Permalink to SSP5 Fossil-fueled Development – Taking the Highway (High challenges to mitigation, low challenges to adaptation)This world places increasing faith in competitive markets, innovation and participatory societies to produce rapid technological progress and development of human capital as the path to sustainable development. Global markets are increasingly integrated. There are also strong investments in health, education, and institutions to enhance human and social capital. At the same time, the push for economic and social development is coupled with the exploitation of abundant fossil fuel resources and the adoption of resource and energy intensive lifestyles around the world. All these factors lead to rapid growth of the global economy, while global population peaks and declines in the 21st century. Local environmental problems like air pollution are successfully managed. There is faith in the ability to effectively manage social and ecological systems, including by geo-engineering if necessary.
Narratives for each Shared Socioeconomic Pathway, from Riahi et al 2017.
Suggested Educational Materials
Permalink to Suggested Educational Materials- Climate Literacy and Energy Awareness Network (CLEAN): Teaching Climate and Energy - Principle 5
- Climate Interactives - Climate Change Solutions Simulators
- Climate Literacy and Energy Awareness Network (CLEAN): Webinar Series
- Climate Literacy and Energy Awareness Network (CLEAN): Climate Model Resource Collection
- Data Puzzles - CIRES Education and Outreach
- Antarctica: Connecting Climate Change, Melting Ice Shelves, and Pooping Penguins - CIRES Education and Outreach Arctic Feedbacks - Not All Warming Is Equal - CIRES Education and Outreach
- Climate and Resiliency Education - CIRES Education and Outreach
For more technical information on the World Climate Research Programme go to the Earth System Grid Federation.
References:
Permalink to References:- Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., ... & Zhao, M. (2020). The GFDL Earth System Model version 4.1 (GFDL‐ESM 4.1): Overall coupled model description and simulation characteristics. Journal of Advances in Modeling Earth Systems, 12(11), e2019MS002015.
- O’Neill, B. C., et al., The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century, Global Environ. Change (2015), .
- O'Neill, B. C., et al., The Scenario Model IntercomparisonProject (ScenarioMIP) for CMIP6,Geosci. Model Dev., 9, 3461-3482, doi:10.5194/gmd-9-3461-2016, 2016.
- Riahi, K. et al., The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environmental Change, Volume 42, 2017, Pages 153-168,
Notable Features
Permalink to Notable Features- The surface pH does not uniformly change as CO2 increases.
- Although the pH changes appear small, pH is on a log scale meaning that a change of one unit represents an order of magnitude change in the acidity of the seawater.
- This dataset shows the projected changes in pH in the Sustainability - SSP1 - future Scenario, where carbon dioxide emissions continue around current levels until 2050, then decrease but do not reach net zero by 2100.
Data Source
Permalink to Data SourceWorld Climate Research Programme CMIP6World Climate Research Programme CMIP6