Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Explorer
- Categories
- Space: Planets and Exoplanets
- Keywords
- Astronomy
- Extras
- Gas Giant
- Jupiter
- Largest
- Planet
- Space
Description
Permalink to DescriptionThree hundred and eighty million miles from Earth, the solar system's largest planet spins like a sizzling top in the night, massive and powerful beyond all comparison short of the sun itself. It's therefore only fitting - and certainly about time - that the fifth planet receive its proper cinematic due, set naturally on the most appropriate cinematic platform. With the movie LARGEST, Jupiter comes to Science On a Sphere.
LARGEST examines the gas giant like a work of art, like a destination of celestial wonder. Starting with the basics, the movie examines the gross anatomy of the immense planet. From swirling winds to astounding rotational velocity to unimaginable size, Jupiter demands nothing less than a list of superlatives. But where general description sets the stage, LARGEST parts the curtains on humanity's experience with the fifth planet. The movie takes us on a journey to this immense sphere via dramatic fly-bys with some of the most astounding robotic probes ever designed. Then, with NASA instruments trained on the striped behemoth, the drama really begins. To learn more about LARGEST, visit the film's website at:
www.nasa.gov/largest.Length of dataset: 8:00
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades 3–5
C1 Patterns. Students identify similarities and differences in order to sort and classify natural objects and designed products. They identify patterns related to time, including simple rates of change and cycles, and to use these patterns to make predictions.
C3 Scale Proportion and Quantity. Students recognize natural objects and observable phenomena exist from the very small to the immensely large. They use standard units to measure and describe physical quantities such as weight, time, temperature, and volume.
C7 Stability and Change. Students measure change in terms of differences over time, and observe that change may occur at different rates. Students learn some systems appear stable, but over long periods of time they will eventually change.
Grades 6–8
C1 Patterns. Students recognize that macroscopic patterns are related to the nature of microscopic and atomic-level structure. They identify patterns in rates of change and other numerical relationships that provide information about natural and human designed systems. They use patterns to identify cause and effect relationships, and use graphs and charts to identify patterns in data.
C4 Systems and System Models. Students can understand that systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. They can use models to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. They can also learn that models are limited in that they only represent certain aspects of the system under study.
C5 Energy and Matter. Students learn matter is conserved because atoms are conserved in physical and chemical processes. They also learn within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter. Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system.
C7 Stability and Change. Students explain stability and change in natural or designed systems by examining changes over time, and considering forces at different scales, including the atomic scale. Students learn changes in one part of a system might cause large changes in another part, systems in dynamic equilibrium are stable due to a balance of feedback mechanisms, and stability might be disturbed by either sudden events or gradual changes that accumulate over time
Grades 9–12
C1 Patterns. Students observe patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments. They use mathematical representations to identify certain patterns and analyze patterns of performance in order to re-engineer and improve a designed system.
C5 Energy and Matter. Students learn that the total amount of energy and matter in closed systems is conserved. They can describe changes of energy and matter in a system in terms of energy and matter flows into, out of, and within that system. They also learn that energy cannot be created or destroyed. It only moves between one place and another place, between objects and/or fields, or between systems. Energy drives the cycling of matter within and between systems. In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.
C7 Stability and Change. Students understand much of science deals with constructing explanations of how things change and how they remain stable. They quantify and model changes in systems over very short or very long periods of time. They see some changes are irreversible, and negative feedback can stabilize a system, while positive feedback can destabilize it. They recognize systems can be designed for greater or lesser stability
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades 3–5
ESS1.A The Universe and its Stars. Stars range greatly in size and distance from Earth and this can explain their relative brightness.
ESS1.B Earth and the Solar System. The Earth’s orbit and rotation, and the orbit of the moon around the Earth cause observable patterns.
ESS2.D Weather & Climate. Climate describes patterns of typical weather conditions over different scales and variations. Historical weather patterns can be analyzed so that they can make predictions about what kind of weather might happen next.
ESS3.B Natural Hazards. A variety of hazards result from natural processes; humans cannot eliminate hazards but can reduce their impacts.
PS1.A Structure of Matter. Because matter exists as particles that are too small to see, matter is always conserved even if it seems to disappear. Measurements of a variety of observable properties can be used to identify particular materials.
PS2.A Forces and Motion. The effect of unbalanced forces on an object results in a change of motion. Patterns of motion can be used to predict future motion. Some forces act through contact, some forces act even when the objects are not in contact. The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center
PS3.A Definitions of Energy. Moving objects contain energy. The faster the object moves, the more energy it has. Energy can be moved from place to place by moving objects, or through sound, light, or electrical currents. Energy can be converted from one form to another form.
PS4.C Information Technologies and Instrumentation. Patterns can encode, send, receive and decode information.
Grades 6–8
ESS1.A The Universe and its Stars. The universe began with a period of extreme and rapid expansion known as the Big Bang. Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe.
ESS1.B Earth and the Solar System. The solar system contains many varied objects held together by gravity. Solar system models explain and predict eclipses, tides, lunar phases, and seasons.
ESS2.D Weather & Climate. Complex interactions determine local weather patterns and influence climate, including the role of the ocean.
ESS3.B Natural Hazards. Mapping the history of natural hazards in a region and understanding related geological forces can help forecast the locations and likelihoods of future events, such as volcanic eruptions, earthquakes and severe weather.
PS1.A Structure of Matter. The fact that matter is composed of atoms and molecules can be used to explain the properties of substances, diversity of materials, states of matter, phase changes, and conservation of matter.
PS2.A Forces and Motion. The role of the mass of an object must be qualitatively accounted for in any change of motion due to the application of a force.
PS2.B Types of Interactions. Forces that act at a distance involve fields that can be mapped by their relative strength and effect on an object.
PS3.A Definitions of Energy. Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.
PS3.C Relationship between energy and forces. When two objects interact, each one exerts a force on the other, and these forces can transfer energy between them.
PS4.C Information Technologies and Instrumentation. Waves can be used to transmit digital information. Digitized information is comprised of a pattern of 1s and 0s.
Grades 9–12
ESS1.A The Universe and its Stars. The sun is just one of more than 200 billion stars in the Milky Way galaxy, and the Milky Way is just one of hundreds of billions of galaxies in the universe. The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth.
ESS1.B Earth and the Solar System. Kepler’s laws describe common features of the motions of orbiting objects. Observations from astronomy and space probes provide evidence for explanations of solar system formation. Changes in Earth’s tilt and orbit cause climate changes such as Ice Ages
ESS2.D Weather & Climate. The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors
ESS3.B Natural Hazards. Natural hazards and other geological events have shaped the course of human history at local, regional, and global scales. Human activities can contribute to the frequency and intensity of some natural hazards.
PS1.A Structure of Matter. The sub-atomic structural model and interactions between electric charges at the atomic scale can be used to explain the structure and interactions of matter, including chemical reactions and nuclear processes. Repeating patterns of the periodic table reflect patterns of outer electrons. A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy to take the molecule apart
PS2.A Forces and Motion. Newton’s 2nd law (F=ma) and the conservation of momentum can be used to predict changes in the motion of macroscopic objects.
PS2.B Types of Interactions. Forces at a distance are explained by fields that can transfer energy and can be described in terms of the arrangement and properties of the interacting objects and the distance between them. These forces can be used to describe the relationship between electrical and magnetic fields.
PS3.A Definitions of Energy. The total energy within a system is conserved. Energy transfer within and between systems can be described and predicted in terms of energy associated with the motion or configuration of particles (objects).
PS3.C Relationship between energy and forces. Fields contain energy that depends on the arrangement of the objects in the field.
PS4.C Information Technologies and Instrumentation. Large amounts of information can be stored and shipped around as a result of being digitized.
Data Source
Permalink to Data SourceNASA/GSFC