Io: Jupiter's Moon
Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Explorer
- Categories
- Space: Moons
- Keywords
- Astronomy
- Io
- Jupiter
- Moon
- Space
- Volcanoes
Description
Permalink to DescriptionIo has often been described as looking like a pizza covered with melted cheese, tomato sauce and olives. The reason for this distinct surface is its vast number of active volcanoes. There are hundreds of volcanoes scattered over the surface of the moon, which is a bit larger than Earth’s Moon. Many of the volcanoes are still active and Voyager 1 and 2 were able to capture pictures of erupting volcanoes with plumes as tall as 190 miles.
The path of Io around Jupiter is highly elliptical causing the tidal forces exerted on the moon to be immense. The effect of this is that the solid body of the moon can bulge out to almost 330 feet. This movement makes the moon incredibly hot, keeping the subsurface crust in a liquid state. This liquid sub-layer is one of the reasons for the high volcanic activity. One result of the volcanic activity is that there are very few crater marks as new lava is constantly filling in any craters that are created. Because of this, Io has a very young surface. There are three datasets available for Io. This dataset shows the surface of the moon as does Io, Moon of Jupiter (USGS). Volcanoes of IO starts with the surface of Io, then highlights the locations of 26 major volcanoes on Io and finally shows the surface again.
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades 3–5
C2 Cause and Effect. Students routinely identify and test causal relationships and use these relationships to explain change. They understand events that occur together with regularity might or might not signify a cause and effect relationship
C4 Systems and System Models. Students understand that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot. They can also describe a system in terms of its components and their interactions.
C7 Stability and Change. Students measure change in terms of differences over time, and observe that change may occur at different rates. Students learn some systems appear stable, but over long periods of time they will eventually change.
Grades 6–8
C2 Cause and Effect. Students classify relationships as causal or correlational, and recognize that correlation does not necessarily imply causation. They use cause and effect relationships to predict phenomena in natural or designed systems. They also understand that phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
C3 Scale Proportion and Quantity. Students observe time, space, and energy phenomena at various scales using models to study systems that are too large or too small. They understand phenomena observed at one scale may not be observable at another scale, and the function of natural and designed systems may change with scale. They use proportional relationships (e.g., speed as the ratio of distance traveled to time taken) to gather information about the magnitude of properties and processes. They represent scientific relationships through the use of algebraic expressions and equations
C4 Systems and System Models. Students can understand that systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. They can use models to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. They can also learn that models are limited in that they only represent certain aspects of the system under study.
C7 Stability and Change. Students explain stability and change in natural or designed systems by examining changes over time, and considering forces at different scales, including the atomic scale. Students learn changes in one part of a system might cause large changes in another part, systems in dynamic equilibrium are stable due to a balance of feedback mechanisms, and stability might be disturbed by either sudden events or gradual changes that accumulate over time
Grades 9–12
C1 Patterns. Students observe patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments. They use mathematical representations to identify certain patterns and analyze patterns of performance in order to re-engineer and improve a designed system.
C2 Cause and Effect. Students understand that empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects. They suggest cause and effect relationships to explain and predict behaviors in complex natural and designed systems. They also propose causal relationships by examining what is known about smaller scale mechanisms within the system. They recognize changes in systems may have various causes that may not have equal effects.
C3 Scale Proportion and Quantity. Students understand the significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. They recognize patterns observable at one scale may not be observable or exist at other scales, and some systems can only be studied indirectly as they are too small, too large, too fast, or too slow to observe directly. Students use orders of magnitude to understand how a model at one scale relates to a model at another scale. They use algebraic thinking to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth).
C6 Structures and Functions. Students investigate systems by examining the properties of different materials, the structures of different components, and their interconnections to reveal the system’s function and/or solve a problem. They infer the functions and properties of natural and designed objects and systems from their overall structure, the way their components are shaped and used, and the molecular substructures of their various materials.
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades 3–5
ESS1.A The Universe and its Stars. Stars range greatly in size and distance from Earth and this can explain their relative brightness.
ESS1.B Earth and the Solar System. The Earth’s orbit and rotation, and the orbit of the moon around the Earth cause observable patterns.
ESS2.B Plate Tectonics & Large Scale Interactions. Earth’s physical features occur in patterns, as do earthquakes and volcanoes. Maps can be used to locate features and determine patterns in those events.
ESS3.B Natural Hazards. A variety of hazards result from natural processes; humans cannot eliminate hazards but can reduce their impacts.
PS2.A Forces and Motion. The effect of unbalanced forces on an object results in a change of motion. Patterns of motion can be used to predict future motion. Some forces act through contact, some forces act even when the objects are not in contact. The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center
Grades 6–8
ESS1.A The Universe and its Stars. The universe began with a period of extreme and rapid expansion known as the Big Bang. Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe.
ESS1.B Earth and the Solar System. The solar system contains many varied objects held together by gravity. Solar system models explain and predict eclipses, tides, lunar phases, and seasons.
ESS2.B Plate Tectonics & Large Scale Interactions. Plate tectonics is the unifying theory that explains movements of rocks at Earth’s surface and geological history. Maps are used to display evidence of plate movement.
ESS3.B Natural Hazards. Mapping the history of natural hazards in a region and understanding related geological forces can help forecast the locations and likelihoods of future events, such as volcanic eruptions, earthquakes and severe weather.
PS2.A Forces and Motion. The role of the mass of an object must be qualitatively accounted for in any change of motion due to the application of a force.
PS2.B Types of Interactions. Forces that act at a distance involve fields that can be mapped by their relative strength and effect on an object.
PS3.C Relationship between energy and forces. When two objects interact, each one exerts a force on the other, and these forces can transfer energy between them.
Grades 9–12
ESS1.A The Universe and its Stars. The sun is just one of more than 200 billion stars in the Milky Way galaxy, and the Milky Way is just one of hundreds of billions of galaxies in the universe. The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth.
ESS1.B Earth and the Solar System. Kepler’s laws describe common features of the motions of orbiting objects. Observations from astronomy and space probes provide evidence for explanations of solar system formation. Changes in Earth’s tilt and orbit cause climate changes such as Ice Ages
ESS2.B Plate Tectonics & Large Scale Interactions. Radioactive decay within Earth’s interior contributes to thermal convection in the mantle. Plate tectonics can be viewed as the surface expression of mantle convection.
ESS3.B Natural Hazards. Natural hazards and other geological events have shaped the course of human history at local, regional, and global scales. Human activities can contribute to the frequency and intensity of some natural hazards.
PS2.A Forces and Motion. Newton’s 2nd law (F=ma) and the conservation of momentum can be used to predict changes in the motion of macroscopic objects.
PS2.B Types of Interactions. Forces at a distance are explained by fields that can transfer energy and can be described in terms of the arrangement and properties of the interacting objects and the distance between them. These forces can be used to describe the relationship between electrical and magnetic fields.
PS3.C Relationship between energy and forces. Fields contain energy that depends on the arrangement of the objects in the field.
Notable Features
Permalink to Notable Features- Extraordinary number of volcanoes
- Lack of craters
- " Pizza—like" appearance
- Volcanoes labeled with letters
Data Source
Permalink to Data SourceVoyager and Galileo