Hurricane Harvey: Clouds with Precipitation - 2017
Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Explorer
- Categories
- Air: Tropical Cyclones, Weather
- Water: Tropical Cyclones
- Keywords
- Atmosphere
- Casualties
- Global Precipitation Measurement (GPM)
- Hurricanes
- IR Satellite
- Severe Weather
- Tropical Cyclones
Description
Permalink to DescriptionHurricane Harvey was an extremely destructive Atlantic hurricane which became the first major hurricane to make landfall in the U.S. since Wilma in 2005. In a four-day period, many areas of eastern Texas received over 40 inches of rain as the system meandered along the gulf coast causing catastrophic flooding. With a record of 51.88 inches, Harvey is the wettest tropical hurricane on record in the contiguous U.S. The resulting floods inundated hundreds of thousands of homes, displaces more than 30,000 people, and prompted more than 17,000 rescues.
The eighth named storm and third hurricane in a very prolific hurricane season, Harvey developed from a tropical wave to the east of the Lesser Antilles, reaching tropical storm status on the 17th of August and intensified to a category 4 hurricane by August 26th when it made landfall near Rockport, Texas. Afterwards, although the storm weakened, rapidly, Harvey stalled near the coastline of the state, dropping torrential and unprecedented amounts of rainfall over the Lone Star state. The third and final landfall of the storm came in Louisiana on August 29th before it drifted inland and dissipated.
Harvey caused at least 83 confirmed deaths. Preliminary estimates for economic losses are between 70 and 200 billion dollars.
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades K–2
C7 Stability and Change. Students observe some things stay the same while other things change, and things may change slowly or rapidly.
Grades 3–5
C3 Scale Proportion and Quantity. Students recognize natural objects and observable phenomena exist from the very small to the immensely large. They use standard units to measure and describe physical quantities such as weight, time, temperature, and volume.
C7 Stability and Change. Students measure change in terms of differences over time, and observe that change may occur at different rates. Students learn some systems appear stable, but over long periods of time they will eventually change.
Grades 6–8
C1 Patterns. Students recognize that macroscopic patterns are related to the nature of microscopic and atomic-level structure. They identify patterns in rates of change and other numerical relationships that provide information about natural and human designed systems. They use patterns to identify cause and effect relationships, and use graphs and charts to identify patterns in data.
C3 Scale Proportion and Quantity. Students observe time, space, and energy phenomena at various scales using models to study systems that are too large or too small. They understand phenomena observed at one scale may not be observable at another scale, and the function of natural and designed systems may change with scale. They use proportional relationships (e.g., speed as the ratio of distance traveled to time taken) to gather information about the magnitude of properties and processes. They represent scientific relationships through the use of algebraic expressions and equations
C7 Stability and Change. Students explain stability and change in natural or designed systems by examining changes over time, and considering forces at different scales, including the atomic scale. Students learn changes in one part of a system might cause large changes in another part, systems in dynamic equilibrium are stable due to a balance of feedback mechanisms, and stability might be disturbed by either sudden events or gradual changes that accumulate over time
Grades 9–12
C3 Scale Proportion and Quantity. Students understand the significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. They recognize patterns observable at one scale may not be observable or exist at other scales, and some systems can only be studied indirectly as they are too small, too large, too fast, or too slow to observe directly. Students use orders of magnitude to understand how a model at one scale relates to a model at another scale. They use algebraic thinking to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth).
C4 Systems and System Models. Students can investigate or analyze a system by defining its boundaries and initial conditions, as well as its inputs and outputs. They can use models (e.g., physical, mathematical, computer models) to simulate the flow of energy, matter, and interactions within and between systems at different scales. They can also use models and simulations to predict the behavior of a system, and recognize that these predictions have limited precision and reliability due to the assumptions and approximations inherent in the models. They can also design systems to do specific tasks.
C7 Stability and Change. Students understand much of science deals with constructing explanations of how things change and how they remain stable. They quantify and model changes in systems over very short or very long periods of time. They see some changes are irreversible, and negative feedback can stabilize a system, while positive feedback can destabilize it. They recognize systems can be designed for greater or lesser stability
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades K–2
ESS2.A Earth Materials and Systems. Wind and water change the shape of the land
ESS2.C The Roles of Water in Earth's Processes. Water is found in many types of places and in different forms on Earth
ESS2.D Weather & Climate. Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region and time. People record weather patterns over time
ESS3.B Natural Hazards. In a region, some kinds of severe weather are more likely than others. Forecasts allow communities to prepare for severe weather.
Grades 3–5
ESS1.C The History of Planet Earth. Certain features on Earth can be used to order events that have occurred in a landscape.
ESS2.A Earth Materials and Systems. Four major Earth systems interact. Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, organisms, and gravity break rocks, soils, and sediments into smaller pieces and move them around
ESS2.C The Roles of Water in Earth's Processes. Most of Earth’s water is in the ocean and much of the Earth’s fresh water is in glaciers or underground.
ESS2.D Weather & Climate. Climate describes patterns of typical weather conditions over different scales and variations. Historical weather patterns can be analyzed so that they can make predictions about what kind of weather might happen next.
ESS3.B Natural Hazards. A variety of hazards result from natural processes; humans cannot eliminate hazards but can reduce their impacts.
ESS3.C Human Impact on Earth systems. Societal activities have had major effects on the land, ocean, atmosphere, and even outer space. Societal activities can also help protect Earth’s resources and environments.
ESS3.D Global Climate Change. If Earth’s global mean temperature continues to rise, the lives of humans and other organisms will be affected in many different ways.
PS2.A Forces and Motion. The effect of unbalanced forces on an object results in a change of motion. Patterns of motion can be used to predict future motion. Some forces act through contact, some forces act even when the objects are not in contact. The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center
PS3.A Definitions of Energy. Moving objects contain energy. The faster the object moves, the more energy it has. Energy can be moved from place to place by moving objects, or through sound, light, or electrical currents. Energy can be converted from one form to another form.
Grades 6–8
ESS2.C The Roles of Water in Earth's Processes. Water cycles among land, ocean, and atmosphere, and is propelled by sunlight and gravity. Density variations of sea water drive interconnected ocean currents. Water movement causes weathering and erosion, changing landscape features.
ESS2.D Weather & Climate. Complex interactions determine local weather patterns and influence climate, including the role of the ocean.
ESS3.B Natural Hazards. Mapping the history of natural hazards in a region and understanding related geological forces can help forecast the locations and likelihoods of future events, such as volcanic eruptions, earthquakes and severe weather.
ESS3.C Human Impact on Earth systems. Human activities have altered the biosphere, sometimes damaging it, although changes to environments can have different impacts for different living things. Activities and technologies can be engineered to reduce people’s impacts on Earth.
ESS3.D Global Climate Change. Human activities affect global warming. Decisions to reduce the impact of global warming depend on understanding climate science, engineering capabilities, and social dynamics.
PS2.A Forces and Motion. The role of the mass of an object must be qualitatively accounted for in any change of motion due to the application of a force.
PS3.A Definitions of Energy. Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.
PS3.C Relationship between energy and forces. When two objects interact, each one exerts a force on the other, and these forces can transfer energy between them.
PS4.A Wave Properties. A simple wave model has a repeating pattern with a specific wavelength, frequency, and amplitude, and mechanical waves need a medium through which they are transmitted. This model can explain many phenomena including sound and light. Waves can transmit energy
Grades 9–12
ESS2.A Earth Materials and Systems. Feedback effects exist within and among Earth’s systems.The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities.
ESS2.C The Roles of Water in Earth's Processes. The planet’s dynamics are greatly influenced by water’s unique chemical and physical properties.
ESS2.D Weather & Climate. The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors
ESS3.B Natural Hazards. Natural hazards and other geological events have shaped the course of human history at local, regional, and global scales. Human activities can contribute to the frequency and intensity of some natural hazards.
ESS3.C Human Impact on Earth systems. Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources, including the development of technologies that produce less pollution and waste and that preclude ecosystem degradation.
ESS3.D Global Climate Change. Global climate models used to predict changes continue to be improved, although discoveries about the global climate system are ongoing and continually needed.
PS2.A Forces and Motion. Newton’s 2nd law (F=ma) and the conservation of momentum can be used to predict changes in the motion of macroscopic objects.
PS2.C Stability & Instability in Physical Systems. Systems often change in predictable ways; understanding the forces that drive the transformations and cycles within a system, as well as the forces imposed on the system from the outside, helps predict its behavior under a variety of conditions. When a system has a great number of component pieces, one may not be able to predict much about its precise future. For such systems (e.g., with very many colliding molecules), one can often predict average but not detailed properties and behaviors (e.g., average temperature, motion, and rates of chemical change but not the trajectories or other changes of particular molecules). Systems may evolve in unpredictable ways when the outcome depends sensitively on the starting condition and the starting condition cannot be specified precisely enough to distinguish between different possible outcomes.
PS3.A Definitions of Energy. The total energy within a system is conserved. Energy transfer within and between systems can be described and predicted in terms of energy associated with the motion or configuration of particles (objects).
PS4.A Wave Properties. The wavelength and frequency of a wave are related to one another by the speed of the wave, which depends on the type of wave and the medium through which it is passing. Waves can be used to transmit information and energy.
Notable Features
Permalink to Notable Features- Harvey was designated a tropical storm on August 17th, 2017 and made landfall in Rockport, Texas on August 26th as a category 4 hurricane, the first major hurricane to hit the U.S. since Wilma in 2005.
- Harvey captured a record for the wettest tropical hurricane in the contiguous U.S. dropping over 51 inches of rain in south-eastern Texas.
- Harvey could very well also be the most expensive hurricane in U.S. history, with estimates of damage topping 200 billion dollars.