Snow and Ice - Real-time
Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Explorer
- Categories
- Snow and Ice: Freshwater, Sea Ice
- Water: Freshwater, Sea Ice
- Keywords
- Cryosphere
- Oceans
- Real-time
- Satellites
- Sea Ice
- Seasons
- Snow
- Snow and Ice Cover
Description
Permalink to DescriptionThe cryosphere (areas covered by ice, snow, glaciers, or permafrost) is an extremely dynamic part of the global system. Changes in the seasons and climate bring great changes to the extent of Earth's cryosphere. Using satellite data allows scientists to keep a continual eye on these areas.
Infrared and microwave data from multiple satellites including the NOAA's GOES Imager and POES AVHRR, US Air Force DMSP/SSMI, and EUMETSAT MSG/SEVIRI sensors is combined to create these daily maps of global snow and ice cover of the planet. Using multiple datasets provides relatively high spatial resolution (about 4 km/pixel) daily maps in all weather conditions. Light blue areas indicate sea ice extent, whereas white colors indicate all other areas of the cryosphere. This SOS dataset is updated on a daily basis in near real-time.
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades K–2
C1 Patterns. Children recognize that patterns in the natural and human designed world can be observed, used to describe phenomena, and used as evidence
C3 Scale Proportion and Quantity. Students use relative scales (e.g., bigger and smaller; hotter and colder; faster and slower) to describe objects. They use standard units to measure length.
Grades 3–5
C1 Patterns. Students identify similarities and differences in order to sort and classify natural objects and designed products. They identify patterns related to time, including simple rates of change and cycles, and to use these patterns to make predictions.
C3 Scale Proportion and Quantity. Students recognize natural objects and observable phenomena exist from the very small to the immensely large. They use standard units to measure and describe physical quantities such as weight, time, temperature, and volume.
Grades 6–8
C1 Patterns. Students recognize that macroscopic patterns are related to the nature of microscopic and atomic-level structure. They identify patterns in rates of change and other numerical relationships that provide information about natural and human designed systems. They use patterns to identify cause and effect relationships, and use graphs and charts to identify patterns in data.
C7 Stability and Change. Students explain stability and change in natural or designed systems by examining changes over time, and considering forces at different scales, including the atomic scale. Students learn changes in one part of a system might cause large changes in another part, systems in dynamic equilibrium are stable due to a balance of feedback mechanisms, and stability might be disturbed by either sudden events or gradual changes that accumulate over time
Grades 9–12
C1 Patterns. Students observe patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments. They use mathematical representations to identify certain patterns and analyze patterns of performance in order to re-engineer and improve a designed system.
C7 Stability and Change. Students understand much of science deals with constructing explanations of how things change and how they remain stable. They quantify and model changes in systems over very short or very long periods of time. They see some changes are irreversible, and negative feedback can stabilize a system, while positive feedback can destabilize it. They recognize systems can be designed for greater or lesser stability
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades K–2
ESS1.B Earth and the Solar System. Patterns of movement of the sun, moon, and stars as seen from Earth can be observed, described, and predicted
ESS2.A Earth Materials and Systems. Wind and water change the shape of the land
ESS2.C The Roles of Water in Earth's Processes. Water is found in many types of places and in different forms on Earth
ESS2.D Weather & Climate. Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region and time. People record weather patterns over time
Grades 3–5
ESS1.B Earth and the Solar System. The Earth’s orbit and rotation, and the orbit of the moon around the Earth cause observable patterns.
ESS2.A Earth Materials and Systems. Four major Earth systems interact. Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, organisms, and gravity break rocks, soils, and sediments into smaller pieces and move them around
ESS2.C The Roles of Water in Earth's Processes. Most of Earth’s water is in the ocean and much of the Earth’s fresh water is in glaciers or underground.
ESS2.D Weather & Climate. Climate describes patterns of typical weather conditions over different scales and variations. Historical weather patterns can be analyzed so that they can make predictions about what kind of weather might happen next.
ESS3.D Global Climate Change. If Earth’s global mean temperature continues to rise, the lives of humans and other organisms will be affected in many different ways.
Grades 6–8
ESS1.B Earth and the Solar System. The solar system contains many varied objects held together by gravity. Solar system models explain and predict eclipses, tides, lunar phases, and seasons.
ESS2.A Earth Materials and Systems. Energy flows and matter cycles within and among Earth’s systems, including the sun and Earth’s interior as primary energy sources. Plate tectonics is one result of these processes.
ESS2.C The Roles of Water in Earth's Processes. Water cycles among land, ocean, and atmosphere, and is propelled by sunlight and gravity. Density variations of sea water drive interconnected ocean currents. Water movement causes weathering and erosion, changing landscape features.
ESS2.D Weather & Climate. Complex interactions determine local weather patterns and influence climate, including the role of the ocean.
ESS3.D Global Climate Change. Human activities affect global warming. Decisions to reduce the impact of global warming depend on understanding climate science, engineering capabilities, and social dynamics.
Grades 9–12
ESS1.B Earth and the Solar System. Kepler’s laws describe common features of the motions of orbiting objects. Observations from astronomy and space probes provide evidence for explanations of solar system formation. Changes in Earth’s tilt and orbit cause climate changes such as Ice Ages
ESS2.A Earth Materials and Systems. Feedback effects exist within and among Earth’s systems.The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities.
ESS2.C The Roles of Water in Earth's Processes. The planet’s dynamics are greatly influenced by water’s unique chemical and physical properties.
ESS2.D Weather & Climate. The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors
Notable Features
Permalink to Notable Features- The seasonal variations are very clear
- During the winter months, the effects of passing snow storms is visible
- In the Northern Hemisphere, the minimum ice concentration occurs in September and the maximum is in March
Data Source
Permalink to Data SourceNOAA, USAF, EUMETSAT