Volcano Locations
Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Explorer
- Categories
- Land: Plate Tectonics
- Keywords
- Convergent
- Divergent
- Emissions
- Eruptions
- Hotspots
- Land
- Ring of Fire
- Tectonics
- Volcano Eruptions
- Volcanoes
Description
Permalink to DescriptionAccording to the Smithsonian Institute's Global Volcanism Program, there are probably about 20 volcanoes erupting right now, and about 550 volcanoes have had historically documented eruptions. A volcano is an opening, or rupture, in the Earth's crust through which molten lava, ash, and gases are ejected. Volcanoes typically form in three different settings. The first is divergent plate boundaries, where tectonic plates are pulling apart from one another, such as the Mid-Atlantic Ocean Ridge. Most of these volcanoes are on the bottom of the ocean floor and are responsible for creating new sea floor. The second location is convergent plate boundaries, where two plates, typically an oceanic and continental plate, are colliding. The volcanoes along the Pacific Ring of Fire are from convergent plate boundaries. The third location is over hotspots, which are typically in the middle of tectonic plates and caused by hot magma rising to the surface. The volcanoes on Hawaii are the result of hotspots.
There are three datasets for Science On a Sphere that highlight global volcano locations. This dataset, compiled by the Smithsonian Institute's Global Volcanism Program, shows the locations of current and past activity for all volcanoes on the planet active during the last 10,000 years. The other two datasets are from the National Geophysical Data Center's Significant Volcanic Eruption Database. The Volcano Eruptions dataset, shows the locations of significant eruptions, of which there are over 400. An eruption is considered significant if there are any fatalities linked to it, the cost of the damage is over one million dollar, it causes a tsunami, or there is a major earthquake associated with it. The final dataset, Volcano Eruptions causing Tsunamis , illustrates the locations of all eruptions that have caused tsunamis.
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades K–2
C1 Patterns. Children recognize that patterns in the natural and human designed world can be observed, used to describe phenomena, and used as evidence
C3 Scale Proportion and Quantity. Students use relative scales (e.g., bigger and smaller; hotter and colder; faster and slower) to describe objects. They use standard units to measure length.
C7 Stability and Change. Students observe some things stay the same while other things change, and things may change slowly or rapidly.
Grades 3–5
C1 Patterns. Students identify similarities and differences in order to sort and classify natural objects and designed products. They identify patterns related to time, including simple rates of change and cycles, and to use these patterns to make predictions.
C3 Scale Proportion and Quantity. Students recognize natural objects and observable phenomena exist from the very small to the immensely large. They use standard units to measure and describe physical quantities such as weight, time, temperature, and volume.
C5 Energy and Matter. Students learn matter is made of particles and energy can be transferred in various ways and between objects. Students observe the conservation of matter by tracking matter flows and cycles before and after processes and recognizing the total weight of substances does not change.
C7 Stability and Change. Students measure change in terms of differences over time, and observe that change may occur at different rates. Students learn some systems appear stable, but over long periods of time they will eventually change.
Grades 6–8
C1 Patterns. Students recognize that macroscopic patterns are related to the nature of microscopic and atomic-level structure. They identify patterns in rates of change and other numerical relationships that provide information about natural and human designed systems. They use patterns to identify cause and effect relationships, and use graphs and charts to identify patterns in data.
C5 Energy and Matter. Students learn matter is conserved because atoms are conserved in physical and chemical processes. They also learn within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter. Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system.
C7 Stability and Change. Students explain stability and change in natural or designed systems by examining changes over time, and considering forces at different scales, including the atomic scale. Students learn changes in one part of a system might cause large changes in another part, systems in dynamic equilibrium are stable due to a balance of feedback mechanisms, and stability might be disturbed by either sudden events or gradual changes that accumulate over time
Grades 9–12
C1 Patterns. Students observe patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments. They use mathematical representations to identify certain patterns and analyze patterns of performance in order to re-engineer and improve a designed system.
C5 Energy and Matter. Students learn that the total amount of energy and matter in closed systems is conserved. They can describe changes of energy and matter in a system in terms of energy and matter flows into, out of, and within that system. They also learn that energy cannot be created or destroyed. It only moves between one place and another place, between objects and/or fields, or between systems. Energy drives the cycling of matter within and between systems. In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.
C7 Stability and Change. Students understand much of science deals with constructing explanations of how things change and how they remain stable. They quantify and model changes in systems over very short or very long periods of time. They see some changes are irreversible, and negative feedback can stabilize a system, while positive feedback can destabilize it. They recognize systems can be designed for greater or lesser stability
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades K–2
ESS1.C The History of Planet Earth. Some events on Earth occur very quickly; others can occur very slowly.
ESS3.B Natural Hazards. In a region, some kinds of severe weather are more likely than others. Forecasts allow communities to prepare for severe weather.
Grades 3–5
ESS1.C The History of Planet Earth. Certain features on Earth can be used to order events that have occurred in a landscape.
ESS2.D Weather & Climate. Climate describes patterns of typical weather conditions over different scales and variations. Historical weather patterns can be analyzed so that they can make predictions about what kind of weather might happen next.
ESS3.B Natural Hazards. A variety of hazards result from natural processes; humans cannot eliminate hazards but can reduce their impacts.
Grades 6–8
ESS1.C The History of Planet Earth. Rock strata and the fossil record can be used as evidence to organize the relative occurrence of major historical events in Earth’s history.
ESS2.D Weather & Climate. Complex interactions determine local weather patterns and influence climate, including the role of the ocean.
ESS2.E Biogeology. Evolution is shaped by Earth’s varying geological conditions. Sudden changes in conditions (e.g., meteor impacts, major volcanic eruptions) have caused mass extinctions, but these changes, as well as more gradual ones, have ultimately allowed other life forms to flourish, which have in turn changed the rates of weathering and erosion of land surfaces, altered the composition of Earth’s soils and atmosphere, and affected the distribution of water in the hydrosphere.
ESS3.B Natural Hazards. Mapping the history of natural hazards in a region and understanding related geological forces can help forecast the locations and likelihoods of future events, such as volcanic eruptions, earthquakes and severe weather.
Grades 9–12
ESS1.C The History of Planet Earth. The rock record resulting from tectonic and other geoscience processes as well as objects from the solar system can provide evidence of Earth’s early history and the relative ages of major geologic formations.
ESS2.D Weather & Climate. The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors
ESS3.B Natural Hazards. Natural hazards and other geological events have shaped the course of human history at local, regional, and global scales. Human activities can contribute to the frequency and intensity of some natural hazards.
Notable Features
Permalink to Notable Features- Most volcanoes occur along convergent boundaries
- There have been about 1300 know eruptions in the last 10,000 years
- There have been over 400 significant eruptions
- There have been 110 eruptions that caused tsunamis