Venus: Radar Brightness
Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Explorer
- Categories
- Space: Planets and Exoplanets
- Keywords
- Astronomy
- Atmosphere
- Planet
- Radar Brightness
- Space
- Venus
Description
Permalink to DescriptionVenus has been referred to by many as the sister or even twin to Earth. This is because of its similar chemical composition, density and size. That, however, is where the similarities end. Venus is not only the hottest planet in the solar system, but also the brightest. Both of these characteristics are the result of the atmosphere that surrounds the planet, which is mainly composed of carbon dioxide and some sulfuric acid. This composition allows for the greenhouse effect to be astronomical causing the planet to have a constant temperature of 864°F. The planet is the brightest because the clouds, composed of sulfur dioxide and sulfuric acid, are highly reflective. The pressure of the atmosphere that surrounds Venus is 90 times that of the atmosphere around Earth, crushing any probes that land on Venus in a matter of hours.
The orbit of Venus is the most circular in the solar system, with the perihelion (position closest to sun) and aphelion (position farthest from sun) varying only by roughly 1%. The average distance to the sun from Venus is 67,237,910 miles. An interesting feature of Venus is that the sun rises in the West and sets in the East; a result of its retrograde rotation. Uranus and Pluto, in addition to Venus, also rotate in the opposite direction of Earth. Besides rotating backwards by Earth’s standards, Venus also rotates very slowly. One day on Venus is 5832 hours or 243 Earth days. The time it takes Venus to orbit around the sun is 224.7 days. This means that a day is longer than a year on Venus. This dataset is a RADAR map of the surface of Venus.
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades 3–5
C3 Scale Proportion and Quantity. Students recognize natural objects and observable phenomena exist from the very small to the immensely large. They use standard units to measure and describe physical quantities such as weight, time, temperature, and volume.
C5 Energy and Matter. Students learn matter is made of particles and energy can be transferred in various ways and between objects. Students observe the conservation of matter by tracking matter flows and cycles before and after processes and recognizing the total weight of substances does not change.
Grades 6–8
C5 Energy and Matter. Students learn matter is conserved because atoms are conserved in physical and chemical processes. They also learn within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter. Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system.
Grades 9–12
C5 Energy and Matter. Students learn that the total amount of energy and matter in closed systems is conserved. They can describe changes of energy and matter in a system in terms of energy and matter flows into, out of, and within that system. They also learn that energy cannot be created or destroyed. It only moves between one place and another place, between objects and/or fields, or between systems. Energy drives the cycling of matter within and between systems. In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades 3–5
ESS1.B Earth and the Solar System. The Earth’s orbit and rotation, and the orbit of the moon around the Earth cause observable patterns.
ESS2.D Weather & Climate. Climate describes patterns of typical weather conditions over different scales and variations. Historical weather patterns can be analyzed so that they can make predictions about what kind of weather might happen next.
ESS3.B Natural Hazards. A variety of hazards result from natural processes; humans cannot eliminate hazards but can reduce their impacts.
PS2.A Forces and Motion. The effect of unbalanced forces on an object results in a change of motion. Patterns of motion can be used to predict future motion. Some forces act through contact, some forces act even when the objects are not in contact. The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center
PS3.A Definitions of Energy. Moving objects contain energy. The faster the object moves, the more energy it has. Energy can be moved from place to place by moving objects, or through sound, light, or electrical currents. Energy can be converted from one form to another form.
PS4.A Wave Properties. Waves are regular patterns of motion, which can be made in water by disturbing the surface. Waves of the same type can differ in amplitude and wavelength. Waves can make objects move.
PS4.C Information Technologies and Instrumentation. Patterns can encode, send, receive and decode information.
Grades 6–8
ESS1.B Earth and the Solar System. The solar system contains many varied objects held together by gravity. Solar system models explain and predict eclipses, tides, lunar phases, and seasons.
ESS2.D Weather & Climate. Complex interactions determine local weather patterns and influence climate, including the role of the ocean.
ESS3.B Natural Hazards. Mapping the history of natural hazards in a region and understanding related geological forces can help forecast the locations and likelihoods of future events, such as volcanic eruptions, earthquakes and severe weather.
PS1.A Structure of Matter. The fact that matter is composed of atoms and molecules can be used to explain the properties of substances, diversity of materials, states of matter, phase changes, and conservation of matter.
PS2.A Forces and Motion. The role of the mass of an object must be qualitatively accounted for in any change of motion due to the application of a force.
PS3.A Definitions of Energy. Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.
PS3.C Relationship between energy and forces. When two objects interact, each one exerts a force on the other, and these forces can transfer energy between them.
PS4.A Wave Properties. A simple wave model has a repeating pattern with a specific wavelength, frequency, and amplitude, and mechanical waves need a medium through which they are transmitted. This model can explain many phenomena including sound and light. Waves can transmit energy
PS4.C Information Technologies and Instrumentation. Waves can be used to transmit digital information. Digitized information is comprised of a pattern of 1s and 0s.
Grades 9–12
ESS1.B Earth and the Solar System. Kepler’s laws describe common features of the motions of orbiting objects. Observations from astronomy and space probes provide evidence for explanations of solar system formation. Changes in Earth’s tilt and orbit cause climate changes such as Ice Ages
ESS2.D Weather & Climate. The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors
ESS3.B Natural Hazards. Natural hazards and other geological events have shaped the course of human history at local, regional, and global scales. Human activities can contribute to the frequency and intensity of some natural hazards.
PS1.A Structure of Matter. The sub-atomic structural model and interactions between electric charges at the atomic scale can be used to explain the structure and interactions of matter, including chemical reactions and nuclear processes. Repeating patterns of the periodic table reflect patterns of outer electrons. A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy to take the molecule apart
PS2.A Forces and Motion. Newton’s 2nd law (F=ma) and the conservation of momentum can be used to predict changes in the motion of macroscopic objects.
PS3.A Definitions of Energy. The total energy within a system is conserved. Energy transfer within and between systems can be described and predicted in terms of energy associated with the motion or configuration of particles (objects).
PS3.C Relationship between energy and forces. Fields contain energy that depends on the arrangement of the objects in the field.
PS4.A Wave Properties. The wavelength and frequency of a wave are related to one another by the speed of the wave, which depends on the type of wave and the medium through which it is passing. Waves can be used to transmit information and energy.
PS4.B Electromagnetic Radiation. Both an electromagnetic wave model and a photon model explain features of electromagnetic radiation broadly and describe common applications of electromagnetic radiation.
PS4.C Information Technologies and Instrumentation. Large amounts of information can be stored and shipped around as a result of being digitized.
Notable Features
Permalink to Notable Features- Brightest planet in the solar system
- The thick clouds obstruct view of the surface
- RADAR was used to map the surface of Venus for this simulation
Data Source
Permalink to Data SourceMagellan, Image details