Hot Air: Atmosphere and Climate Change
Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Explorer
- Categories
- Air: Human Impact, Chemistry, Temperature Change
- Keywords
- Atmosphere
- Carbon Dioxide
- Extras
- Global Warming
- Greenhouse Effect
Description
Permalink to DescriptionHot Air is a three-minute autorun film about human-induced changes to the atmosphere. Featuring atmospheric scientist Tracy Twine from the University of Minnesota, the film explains the fundamentals of the greenhouse effect, the basic facts about changes in the carbon dioxide concentration of the atmosphere, and historical temperature variations. The show is built around a dataset showing global temperature anomalies from 1880 - 2012, carefully explaining what the dataset represents and what its implications are. Professor Twine then connects this global threat to her individual research on urban heat islands, demonstrating the connection between large-scale challenges and individual research efforts.
Hot Air is one in a series of four SOS films that use data visualizations and actual scientists to tell stories about the impacts of climate change. No other single natural factor affects Earth as much as humans now do. Separately, each film stands alone, focusing on a single area of human impact, and features a researcher working in this area. Together, the films tell a bigger story about the human-generated effects of global climate change.
This movie is available in English and Spanish.
Length of dataset: 3:12
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades K–2
C1 Patterns. Children recognize that patterns in the natural and human designed world can be observed, used to describe phenomena, and used as evidence
C2 Cause and Effect. Students learn that events have causes that generate observable patterns. They design simple tests to gather evidence to support or refute their own ideas about causes.
C3 Scale Proportion and Quantity. Students use relative scales (e.g., bigger and smaller; hotter and colder; faster and slower) to describe objects. They use standard units to measure length.
C7 Stability and Change. Students observe some things stay the same while other things change, and things may change slowly or rapidly.
Grades 3–5
C1 Patterns. Students identify similarities and differences in order to sort and classify natural objects and designed products. They identify patterns related to time, including simple rates of change and cycles, and to use these patterns to make predictions.
C2 Cause and Effect. Students routinely identify and test causal relationships and use these relationships to explain change. They understand events that occur together with regularity might or might not signify a cause and effect relationship
C3 Scale Proportion and Quantity. Students recognize natural objects and observable phenomena exist from the very small to the immensely large. They use standard units to measure and describe physical quantities such as weight, time, temperature, and volume.
C5 Energy and Matter. Students learn matter is made of particles and energy can be transferred in various ways and between objects. Students observe the conservation of matter by tracking matter flows and cycles before and after processes and recognizing the total weight of substances does not change.
C7 Stability and Change. Students measure change in terms of differences over time, and observe that change may occur at different rates. Students learn some systems appear stable, but over long periods of time they will eventually change.
Grades 6–8
C1 Patterns. Students recognize that macroscopic patterns are related to the nature of microscopic and atomic-level structure. They identify patterns in rates of change and other numerical relationships that provide information about natural and human designed systems. They use patterns to identify cause and effect relationships, and use graphs and charts to identify patterns in data.
C2 Cause and Effect. Students classify relationships as causal or correlational, and recognize that correlation does not necessarily imply causation. They use cause and effect relationships to predict phenomena in natural or designed systems. They also understand that phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
C3 Scale Proportion and Quantity. Students observe time, space, and energy phenomena at various scales using models to study systems that are too large or too small. They understand phenomena observed at one scale may not be observable at another scale, and the function of natural and designed systems may change with scale. They use proportional relationships (e.g., speed as the ratio of distance traveled to time taken) to gather information about the magnitude of properties and processes. They represent scientific relationships through the use of algebraic expressions and equations
C4 Systems and System Models. Students can understand that systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. They can use models to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. They can also learn that models are limited in that they only represent certain aspects of the system under study.
C5 Energy and Matter. Students learn matter is conserved because atoms are conserved in physical and chemical processes. They also learn within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter. Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system.
C7 Stability and Change. Students explain stability and change in natural or designed systems by examining changes over time, and considering forces at different scales, including the atomic scale. Students learn changes in one part of a system might cause large changes in another part, systems in dynamic equilibrium are stable due to a balance of feedback mechanisms, and stability might be disturbed by either sudden events or gradual changes that accumulate over time
Grades 9–12
C1 Patterns. Students observe patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments. They use mathematical representations to identify certain patterns and analyze patterns of performance in order to re-engineer and improve a designed system.
C2 Cause and Effect. Students understand that empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects. They suggest cause and effect relationships to explain and predict behaviors in complex natural and designed systems. They also propose causal relationships by examining what is known about smaller scale mechanisms within the system. They recognize changes in systems may have various causes that may not have equal effects.
C4 Systems and System Models. Students can investigate or analyze a system by defining its boundaries and initial conditions, as well as its inputs and outputs. They can use models (e.g., physical, mathematical, computer models) to simulate the flow of energy, matter, and interactions within and between systems at different scales. They can also use models and simulations to predict the behavior of a system, and recognize that these predictions have limited precision and reliability due to the assumptions and approximations inherent in the models. They can also design systems to do specific tasks.
C5 Energy and Matter. Students learn that the total amount of energy and matter in closed systems is conserved. They can describe changes of energy and matter in a system in terms of energy and matter flows into, out of, and within that system. They also learn that energy cannot be created or destroyed. It only moves between one place and another place, between objects and/or fields, or between systems. Energy drives the cycling of matter within and between systems. In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.
C7 Stability and Change. Students understand much of science deals with constructing explanations of how things change and how they remain stable. They quantify and model changes in systems over very short or very long periods of time. They see some changes are irreversible, and negative feedback can stabilize a system, while positive feedback can destabilize it. They recognize systems can be designed for greater or lesser stability
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades K–2
ESS2.A Earth Materials and Systems. Wind and water change the shape of the land
ESS2.D Weather & Climate. Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region and time. People record weather patterns over time
ESS3.A Natural Resources. Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do.
ESS3.C Human Impact on Earth systems. Things people do can affect the environment but they can make choices to reduce their impacts.
Grades 3–5
ESS2.A Earth Materials and Systems. Four major Earth systems interact. Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, organisms, and gravity break rocks, soils, and sediments into smaller pieces and move them around
ESS2.D Weather & Climate. Climate describes patterns of typical weather conditions over different scales and variations. Historical weather patterns can be analyzed so that they can make predictions about what kind of weather might happen next.
ESS3.A Natural Resources. Energy and fuels humans use are derived from natural sources and their use affects the environment. Some resources are renewable over time, others are not.
ESS3.B Natural Hazards. A variety of hazards result from natural processes; humans cannot eliminate hazards but can reduce their impacts.
ESS3.C Human Impact on Earth systems. Societal activities have had major effects on the land, ocean, atmosphere, and even outer space. Societal activities can also help protect Earth’s resources and environments.
ESS3.D Global Climate Change. If Earth’s global mean temperature continues to rise, the lives of humans and other organisms will be affected in many different ways.
LS4.D Biodiversity & Humans. Populations of organisms live in a variety of habitats. Change in those habitats affects the organisms living there
PS1.A Structure of Matter. Because matter exists as particles that are too small to see, matter is always conserved even if it seems to disappear. Measurements of a variety of observable properties can be used to identify particular materials.
PS3.A Definitions of Energy. Moving objects contain energy. The faster the object moves, the more energy it has. Energy can be moved from place to place by moving objects, or through sound, light, or electrical currents. Energy can be converted from one form to another form.
Grades 6–8
ESS2.A Earth Materials and Systems. Energy flows and matter cycles within and among Earth’s systems, including the sun and Earth’s interior as primary energy sources. Plate tectonics is one result of these processes.
ESS2.D Weather & Climate. Complex interactions determine local weather patterns and influence climate, including the role of the ocean.
ESS3.A Natural Resources. Humans depend on Earth’s land, ocean, atmosphere, and biosphere for different resources, many of which are limited or not renewable. Resources are distributed unevenly around the planet as a result of past geologic processes
ESS3.B Natural Hazards. Mapping the history of natural hazards in a region and understanding related geological forces can help forecast the locations and likelihoods of future events, such as volcanic eruptions, earthquakes and severe weather.
ESS3.C Human Impact on Earth systems. Human activities have altered the biosphere, sometimes damaging it, although changes to environments can have different impacts for different living things. Activities and technologies can be engineered to reduce people’s impacts on Earth.
ESS3.D Global Climate Change. Human activities affect global warming. Decisions to reduce the impact of global warming depend on understanding climate science, engineering capabilities, and social dynamics.
LS4.D Biodiversity & Humans. Changes in biodiversity can influence humans’ resources and ecosystem services they rely on.
PS1.A Structure of Matter. The fact that matter is composed of atoms and molecules can be used to explain the properties of substances, diversity of materials, states of matter, phase changes, and conservation of matter.
PS3.A Definitions of Energy. Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.
PS3.B Conservation of Energy and Energy Transfer. Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.
PS4.A Wave Properties. A simple wave model has a repeating pattern with a specific wavelength, frequency, and amplitude, and mechanical waves need a medium through which they are transmitted. This model can explain many phenomena including sound and light. Waves can transmit energy
Grades 9–12
ESS2.A Earth Materials and Systems. Feedback effects exist within and among Earth’s systems.The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities.
ESS2.D Weather & Climate. The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors
ESS2.E Biogeology. The biosphere and Earth’s other systems have many interconnections that cause a continual co-evolution of Earth’s surface and life on it
ESS3.A Natural Resources. Resource availability has guided the development of human society and use of natural resources has associated costs, risks, and benefits.
ESS3.B Natural Hazards. Natural hazards and other geological events have shaped the course of human history at local, regional, and global scales. Human activities can contribute to the frequency and intensity of some natural hazards.
ESS3.C Human Impact on Earth systems. Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources, including the development of technologies that produce less pollution and waste and that preclude ecosystem degradation.
ESS3.D Global Climate Change. Global climate models used to predict changes continue to be improved, although discoveries about the global climate system are ongoing and continually needed.
LS4.D Biodiversity & Humans. Biodiversity is increased by formation of new species and reduced by extinction. Humans depend on biodiversity but also have adverse impacts on it. Sustaining biodiversity is essential to supporting life on Earth
PS1.A Structure of Matter. The sub-atomic structural model and interactions between electric charges at the atomic scale can be used to explain the structure and interactions of matter, including chemical reactions and nuclear processes. Repeating patterns of the periodic table reflect patterns of outer electrons. A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy to take the molecule apart
PS3.A Definitions of Energy. The total energy within a system is conserved. Energy transfer within and between systems can be described and predicted in terms of energy associated with the motion or configuration of particles (objects).
PS3.B Conservation of Energy and Energy Transfer. Systems move toward stable states.
PS4.A Wave Properties. The wavelength and frequency of a wave are related to one another by the speed of the wave, which depends on the type of wave and the medium through which it is passing. Waves can be used to transmit information and energy.
PS4.B Electromagnetic Radiation. Both an electromagnetic wave model and a photon model explain features of electromagnetic radiation broadly and describe common applications of electromagnetic radiation.
Variations
Permalink to VariationsVariations introduce slight modifications to the main dataset. For example, a variation might add a PIP or provide a translated audio track.
- Hot Air: Atmosphere and Climate Change (in Spanish)
Data Source
Permalink to Data SourceInstitute on the Environment at the University of Minnesota