Exploring the Unknown Ocean
Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Explorer
- Categories
- Water: Seafloor, Exploration, Ocean Monitoring
- Keywords
- Deep Ocean
- Multibeam
- Ocean Exploration
- Oceans
- ROV
- Satellites
Description
Permalink to DescriptionThe global ocean encompasses 75% of our blue planet, yet less than 10% of the waters below its rippling surface have been explored. It was once thought that the ocean depths were devoid of life, the seafloor, a barren, empty plain. However, advances in ocean science technologies are taking humans to previously unexplored waters, revealing unimaginable subsea landscapes, teaming with life. The compelling story behind these technologies, the people that operate them, the scientists who use them, and the amazing discoveries they make together are highlighted in a new, innovative SOS program developed by the Inner Space Center (ISC) at the University of Rhode Island Graduate School of Oceanography (URI/GSO). It features deep-sea encounters, creature discoveries, and interesting habitats; engaging, scientists’ audio commentaries; and imaginative technology visualizations and animations, all linked via inventive, sphere-based storytelling. This program is intended for use at informal science education institutions with SOS installations and incorporates options for content expansion and audience engagement with science interpreters.
Credits
Permalink to CreditsProduced by The Inner Space Center
In Partnership with 42° North Media and NOAA’s Office of Ocean Exploration and Research
Funding Provided by National Marine Sanctuary Foundation
Music composed by Robert Neufeld
Narrated by Drew Patterson
Special thanks Walter Smith, David Sandwell, Allan Adams, Mashkoor Malik, Jesse Varner,
Nicole Raineault, NOAA’s Office of Ocean Exploration and Research, Ocean Exploration Trust, Woods Hole Oceanographic Institution
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades K–2
C1 Patterns. Children recognize that patterns in the natural and human designed world can be observed, used to describe phenomena, and used as evidence
C6 Structures and Functions. Students observe the shape and stability of structures of natural and designed objects are related to their function(s).
C7 Stability and Change. Students observe some things stay the same while other things change, and things may change slowly or rapidly.
Grades 3–5
C1 Patterns. Students identify similarities and differences in order to sort and classify natural objects and designed products. They identify patterns related to time, including simple rates of change and cycles, and to use these patterns to make predictions.
C3 Scale Proportion and Quantity. Students recognize natural objects and observable phenomena exist from the very small to the immensely large. They use standard units to measure and describe physical quantities such as weight, time, temperature, and volume.
C4 Systems and System Models. Students understand that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot. They can also describe a system in terms of its components and their interactions.
C7 Stability and Change. Students measure change in terms of differences over time, and observe that change may occur at different rates. Students learn some systems appear stable, but over long periods of time they will eventually change.
Grades 6–8
C1 Patterns. Students recognize that macroscopic patterns are related to the nature of microscopic and atomic-level structure. They identify patterns in rates of change and other numerical relationships that provide information about natural and human designed systems. They use patterns to identify cause and effect relationships, and use graphs and charts to identify patterns in data.
C2 Cause and Effect. Students classify relationships as causal or correlational, and recognize that correlation does not necessarily imply causation. They use cause and effect relationships to predict phenomena in natural or designed systems. They also understand that phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
C3 Scale Proportion and Quantity. Students observe time, space, and energy phenomena at various scales using models to study systems that are too large or too small. They understand phenomena observed at one scale may not be observable at another scale, and the function of natural and designed systems may change with scale. They use proportional relationships (e.g., speed as the ratio of distance traveled to time taken) to gather information about the magnitude of properties and processes. They represent scientific relationships through the use of algebraic expressions and equations
C4 Systems and System Models. Students can understand that systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. They can use models to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. They can also learn that models are limited in that they only represent certain aspects of the system under study.
C5 Energy and Matter. Students learn matter is conserved because atoms are conserved in physical and chemical processes. They also learn within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter. Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system.
C7 Stability and Change. Students explain stability and change in natural or designed systems by examining changes over time, and considering forces at different scales, including the atomic scale. Students learn changes in one part of a system might cause large changes in another part, systems in dynamic equilibrium are stable due to a balance of feedback mechanisms, and stability might be disturbed by either sudden events or gradual changes that accumulate over time
Grades 9–12
C2 Cause and Effect. Students understand that empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects. They suggest cause and effect relationships to explain and predict behaviors in complex natural and designed systems. They also propose causal relationships by examining what is known about smaller scale mechanisms within the system. They recognize changes in systems may have various causes that may not have equal effects.
C5 Energy and Matter. Students learn that the total amount of energy and matter in closed systems is conserved. They can describe changes of energy and matter in a system in terms of energy and matter flows into, out of, and within that system. They also learn that energy cannot be created or destroyed. It only moves between one place and another place, between objects and/or fields, or between systems. Energy drives the cycling of matter within and between systems. In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.
C6 Structures and Functions. Students investigate systems by examining the properties of different materials, the structures of different components, and their interconnections to reveal the system’s function and/or solve a problem. They infer the functions and properties of natural and designed objects and systems from their overall structure, the way their components are shaped and used, and the molecular substructures of their various materials.
C7 Stability and Change. Students understand much of science deals with constructing explanations of how things change and how they remain stable. They quantify and model changes in systems over very short or very long periods of time. They see some changes are irreversible, and negative feedback can stabilize a system, while positive feedback can destabilize it. They recognize systems can be designed for greater or lesser stability
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades K–2
ESS1.C The History of Planet Earth. Some events on Earth occur very quickly; others can occur very slowly.
ESS2.A Earth Materials and Systems. Wind and water change the shape of the land
ESS2.B Plate Tectonics & Large Scale Interactions. Maps show where things are located. One can map the shapes and kinds of land and water in any area.
ESS2.C The Roles of Water in Earth's Processes. Water is found in many types of places and in different forms on Earth
ESS3.C Human Impact on Earth systems. Things people do can affect the environment but they can make choices to reduce their impacts.
LS4.D Biodiversity & Humans. A range of different organisms lives in different places
PS4.B Electromagnetic Radiation. Objects can be seen only when light is available to illuminate them.
PS4.C Information Technologies and Instrumentation. People use devices to send and receive information.
Grades 3–5
ESS1.C The History of Planet Earth. Certain features on Earth can be used to order events that have occurred in a landscape.
ESS2.A Earth Materials and Systems. Four major Earth systems interact. Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, organisms, and gravity break rocks, soils, and sediments into smaller pieces and move them around
ESS2.B Plate Tectonics & Large Scale Interactions. Earth’s physical features occur in patterns, as do earthquakes and volcanoes. Maps can be used to locate features and determine patterns in those events.
ESS2.C The Roles of Water in Earth's Processes. Most of Earth’s water is in the ocean and much of the Earth’s fresh water is in glaciers or underground.
ESS3.C Human Impact on Earth systems. Societal activities have had major effects on the land, ocean, atmosphere, and even outer space. Societal activities can also help protect Earth’s resources and environments.
LS4.D Biodiversity & Humans. Populations of organisms live in a variety of habitats. Change in those habitats affects the organisms living there
PS4.A Wave Properties. Waves are regular patterns of motion, which can be made in water by disturbing the surface. Waves of the same type can differ in amplitude and wavelength. Waves can make objects move.
PS4.B Electromagnetic Radiation. Object can be seen when light reflected from their surface enters our eyes
PS4.C Information Technologies and Instrumentation. Patterns can encode, send, receive and decode information.
Grades 6–8
ESS1.C The History of Planet Earth. Rock strata and the fossil record can be used as evidence to organize the relative occurrence of major historical events in Earth’s history.
ESS2.A Earth Materials and Systems. Energy flows and matter cycles within and among Earth’s systems, including the sun and Earth’s interior as primary energy sources. Plate tectonics is one result of these processes.
ESS2.B Plate Tectonics & Large Scale Interactions. Plate tectonics is the unifying theory that explains movements of rocks at Earth’s surface and geological history. Maps are used to display evidence of plate movement.
ESS2.C The Roles of Water in Earth's Processes. Water cycles among land, ocean, and atmosphere, and is propelled by sunlight and gravity. Density variations of sea water drive interconnected ocean currents. Water movement causes weathering and erosion, changing landscape features.
ESS3.C Human Impact on Earth systems. Human activities have altered the biosphere, sometimes damaging it, although changes to environments can have different impacts for different living things. Activities and technologies can be engineered to reduce people’s impacts on Earth.
LS4.D Biodiversity & Humans. Changes in biodiversity can influence humans’ resources and ecosystem services they rely on.
PS4.A Wave Properties. A simple wave model has a repeating pattern with a specific wavelength, frequency, and amplitude, and mechanical waves need a medium through which they are transmitted. This model can explain many phenomena including sound and light. Waves can transmit energy
PS4.B Electromagnetic Radiation. The construct of a wave is used to model how light interacts with objects.
PS4.C Information Technologies and Instrumentation. Waves can be used to transmit digital information. Digitized information is comprised of a pattern of 1s and 0s.
Grades 9–12
ESS1.C The History of Planet Earth. The rock record resulting from tectonic and other geoscience processes as well as objects from the solar system can provide evidence of Earth’s early history and the relative ages of major geologic formations.
ESS2.A Earth Materials and Systems. Feedback effects exist within and among Earth’s systems.The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities.
ESS2.B Plate Tectonics & Large Scale Interactions. Radioactive decay within Earth’s interior contributes to thermal convection in the mantle. Plate tectonics can be viewed as the surface expression of mantle convection.
ESS2.C The Roles of Water in Earth's Processes. The planet’s dynamics are greatly influenced by water’s unique chemical and physical properties.
ESS3.C Human Impact on Earth systems. Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources, including the development of technologies that produce less pollution and waste and that preclude ecosystem degradation.
LS4.D Biodiversity & Humans. Biodiversity is increased by formation of new species and reduced by extinction. Humans depend on biodiversity but also have adverse impacts on it. Sustaining biodiversity is essential to supporting life on Earth
PS4.A Wave Properties. The wavelength and frequency of a wave are related to one another by the speed of the wave, which depends on the type of wave and the medium through which it is passing. Waves can be used to transmit information and energy.
PS4.B Electromagnetic Radiation. Both an electromagnetic wave model and a photon model explain features of electromagnetic radiation broadly and describe common applications of electromagnetic radiation.
PS4.C Information Technologies and Instrumentation. Large amounts of information can be stored and shipped around as a result of being digitized.