Experience - Tornado Safety
Details
Permalink to Details- Added to the Catalog
- Available for
- Explorer
- Categories
- Air: Weather
- Keywords
- Severe Weather
- Tornadoes
- Weather
- Wind
Description
Permalink to DescriptionSOS Explorer has a unique capability that allows for first-person adventures, extending beyond global maps. In this Experience, users begin in a house where a movie about tornado safety is on the TV. Once they have watched the movie, they are asked to answer a couple of questions, before a tornado appears outside their window! At this point, thanks to NOAA tornado safety protocol, hopefully the user chooses the best place to seek shelter during the storm.
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades K–2
C2 Cause and Effect. Students learn that events have causes that generate observable patterns. They design simple tests to gather evidence to support or refute their own ideas about causes.
C4 Systems and System Models. Students understand objects and organisms can be described in terms of their parts; and systems in the natural and designed world have parts that work together.
Grades 3–5
C2 Cause and Effect. Students routinely identify and test causal relationships and use these relationships to explain change. They understand events that occur together with regularity might or might not signify a cause and effect relationship
Grades 6–8
C2 Cause and Effect. Students classify relationships as causal or correlational, and recognize that correlation does not necessarily imply causation. They use cause and effect relationships to predict phenomena in natural or designed systems. They also understand that phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
C7 Stability and Change. Students explain stability and change in natural or designed systems by examining changes over time, and considering forces at different scales, including the atomic scale. Students learn changes in one part of a system might cause large changes in another part, systems in dynamic equilibrium are stable due to a balance of feedback mechanisms, and stability might be disturbed by either sudden events or gradual changes that accumulate over time
Grades 9–12
C2 Cause and Effect. Students understand that empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects. They suggest cause and effect relationships to explain and predict behaviors in complex natural and designed systems. They also propose causal relationships by examining what is known about smaller scale mechanisms within the system. They recognize changes in systems may have various causes that may not have equal effects.
C4 Systems and System Models. Students can investigate or analyze a system by defining its boundaries and initial conditions, as well as its inputs and outputs. They can use models (e.g., physical, mathematical, computer models) to simulate the flow of energy, matter, and interactions within and between systems at different scales. They can also use models and simulations to predict the behavior of a system, and recognize that these predictions have limited precision and reliability due to the assumptions and approximations inherent in the models. They can also design systems to do specific tasks.
C7 Stability and Change. Students understand much of science deals with constructing explanations of how things change and how they remain stable. They quantify and model changes in systems over very short or very long periods of time. They see some changes are irreversible, and negative feedback can stabilize a system, while positive feedback can destabilize it. They recognize systems can be designed for greater or lesser stability
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades K–2
ESS2.D Weather & Climate. Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region and time. People record weather patterns over time
ESS3.B Natural Hazards. In a region, some kinds of severe weather are more likely than others. Forecasts allow communities to prepare for severe weather.
ESS3.C Human Impact on Earth systems. Things people do can affect the environment but they can make choices to reduce their impacts.
PS2.B Types of Interactions. Pushes and pulls can have different strengths and directions, and can change the speed or direction of its motion or start or stop it.
Grades 3–5
ESS2.D Weather & Climate. Climate describes patterns of typical weather conditions over different scales and variations. Historical weather patterns can be analyzed so that they can make predictions about what kind of weather might happen next.
ESS3.B Natural Hazards. A variety of hazards result from natural processes; humans cannot eliminate hazards but can reduce their impacts.
ESS3.C Human Impact on Earth systems. Societal activities have had major effects on the land, ocean, atmosphere, and even outer space. Societal activities can also help protect Earth’s resources and environments.
PS2.A Forces and Motion. The effect of unbalanced forces on an object results in a change of motion. Patterns of motion can be used to predict future motion. Some forces act through contact, some forces act even when the objects are not in contact. The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center
PS2.B Types of Interactions. The effect of unbalanced forces on an object results in a change of motion. Patterns of motion can be used to predict future motion. Some forces act through contact, some forces act even when the objects are not in contact. The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center
PS3.A Definitions of Energy. Moving objects contain energy. The faster the object moves, the more energy it has. Energy can be moved from place to place by moving objects, or through sound, light, or electrical currents. Energy can be converted from one form to another form.
Grades 6–8
ESS2.C The Roles of Water in Earth's Processes. Water cycles among land, ocean, and atmosphere, and is propelled by sunlight and gravity. Density variations of sea water drive interconnected ocean currents. Water movement causes weathering and erosion, changing landscape features.
ESS2.D Weather & Climate. Complex interactions determine local weather patterns and influence climate, including the role of the ocean.
ESS3.B Natural Hazards. Mapping the history of natural hazards in a region and understanding related geological forces can help forecast the locations and likelihoods of future events, such as volcanic eruptions, earthquakes and severe weather.
ESS3.C Human Impact on Earth systems. Human activities have altered the biosphere, sometimes damaging it, although changes to environments can have different impacts for different living things. Activities and technologies can be engineered to reduce people’s impacts on Earth.
ESS3.D Global Climate Change. Human activities affect global warming. Decisions to reduce the impact of global warming depend on understanding climate science, engineering capabilities, and social dynamics.
PS2.A Forces and Motion. The role of the mass of an object must be qualitatively accounted for in any change of motion due to the application of a force.
PS2.B Types of Interactions. Forces that act at a distance involve fields that can be mapped by their relative strength and effect on an object.
PS3.A Definitions of Energy. Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.
PS4.A Wave Properties. A simple wave model has a repeating pattern with a specific wavelength, frequency, and amplitude, and mechanical waves need a medium through which they are transmitted. This model can explain many phenomena including sound and light. Waves can transmit energy
Grades 9–12
ESS2.C The Roles of Water in Earth's Processes. The planet’s dynamics are greatly influenced by water’s unique chemical and physical properties.
ESS2.D Weather & Climate. The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors
ESS3.B Natural Hazards. Natural hazards and other geological events have shaped the course of human history at local, regional, and global scales. Human activities can contribute to the frequency and intensity of some natural hazards.
ESS3.C Human Impact on Earth systems. Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources, including the development of technologies that produce less pollution and waste and that preclude ecosystem degradation.
ESS3.D Global Climate Change. Global climate models used to predict changes continue to be improved, although discoveries about the global climate system are ongoing and continually needed.
PS2.A Forces and Motion. Newton’s 2nd law (F=ma) and the conservation of momentum can be used to predict changes in the motion of macroscopic objects.
PS2.B Types of Interactions. Forces at a distance are explained by fields that can transfer energy and can be described in terms of the arrangement and properties of the interacting objects and the distance between them. These forces can be used to describe the relationship between electrical and magnetic fields.
PS2.C Stability & Instability in Physical Systems. Systems often change in predictable ways; understanding the forces that drive the transformations and cycles within a system, as well as the forces imposed on the system from the outside, helps predict its behavior under a variety of conditions. When a system has a great number of component pieces, one may not be able to predict much about its precise future. For such systems (e.g., with very many colliding molecules), one can often predict average but not detailed properties and behaviors (e.g., average temperature, motion, and rates of chemical change but not the trajectories or other changes of particular molecules). Systems may evolve in unpredictable ways when the outcome depends sensitively on the starting condition and the starting condition cannot be specified precisely enough to distinguish between different possible outcomes.
PS4.A Wave Properties. The wavelength and frequency of a wave are related to one another by the speed of the wave, which depends on the type of wave and the medium through which it is passing. Waves can be used to transmit information and energy.