Energy Planet
Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Explorer
- Categories
- People: Energy
- Keywords
- Energy
- Energy Planet
- Extras
Description
Permalink to DescriptionEnergy Planet provides viewers with a brisk overview of the energy challenges facing our planet and how renewable energy technologies can help meet them.
Using data sets from NOAA, NASA and the U.S. Department of Energy's National Renewable Energy Laboratory, the movie provides an overview of the economic, security and climate challenges that fossil fuels create as the industrial world's dominant energy source. And it suggests how scientific research has expanded and accelerated the generation of electricity from solar and wind resources on a large scale, as well as vehicle fuels made from biological sources, in order to provide the world with more clean, sustainable energy.
Energy Planet is a five minute, narrated animated movie that was produced for Science on a Sphere by the National Renewable Energy Laboratory in Golden, Colo.
Length of dataset: 5:10
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades 3–5
C2 Cause and Effect. Students routinely identify and test causal relationships and use these relationships to explain change. They understand events that occur together with regularity might or might not signify a cause and effect relationship
C3 Scale Proportion and Quantity. Students recognize natural objects and observable phenomena exist from the very small to the immensely large. They use standard units to measure and describe physical quantities such as weight, time, temperature, and volume.
C5 Energy and Matter. Students learn matter is made of particles and energy can be transferred in various ways and between objects. Students observe the conservation of matter by tracking matter flows and cycles before and after processes and recognizing the total weight of substances does not change.
C7 Stability and Change. Students measure change in terms of differences over time, and observe that change may occur at different rates. Students learn some systems appear stable, but over long periods of time they will eventually change.
Grades 6–8
C2 Cause and Effect. Students classify relationships as causal or correlational, and recognize that correlation does not necessarily imply causation. They use cause and effect relationships to predict phenomena in natural or designed systems. They also understand that phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
C4 Systems and System Models. Students can understand that systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. They can use models to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. They can also learn that models are limited in that they only represent certain aspects of the system under study.
C5 Energy and Matter. Students learn matter is conserved because atoms are conserved in physical and chemical processes. They also learn within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter. Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system.
C7 Stability and Change. Students explain stability and change in natural or designed systems by examining changes over time, and considering forces at different scales, including the atomic scale. Students learn changes in one part of a system might cause large changes in another part, systems in dynamic equilibrium are stable due to a balance of feedback mechanisms, and stability might be disturbed by either sudden events or gradual changes that accumulate over time
Grades 9–12
C2 Cause and Effect. Students understand that empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects. They suggest cause and effect relationships to explain and predict behaviors in complex natural and designed systems. They also propose causal relationships by examining what is known about smaller scale mechanisms within the system. They recognize changes in systems may have various causes that may not have equal effects.
C3 Scale Proportion and Quantity. Students understand the significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. They recognize patterns observable at one scale may not be observable or exist at other scales, and some systems can only be studied indirectly as they are too small, too large, too fast, or too slow to observe directly. Students use orders of magnitude to understand how a model at one scale relates to a model at another scale. They use algebraic thinking to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth).
C5 Energy and Matter. Students learn that the total amount of energy and matter in closed systems is conserved. They can describe changes of energy and matter in a system in terms of energy and matter flows into, out of, and within that system. They also learn that energy cannot be created or destroyed. It only moves between one place and another place, between objects and/or fields, or between systems. Energy drives the cycling of matter within and between systems. In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.
C7 Stability and Change. Students understand much of science deals with constructing explanations of how things change and how they remain stable. They quantify and model changes in systems over very short or very long periods of time. They see some changes are irreversible, and negative feedback can stabilize a system, while positive feedback can destabilize it. They recognize systems can be designed for greater or lesser stability
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades 3–5
ESS3.A Natural Resources. Energy and fuels humans use are derived from natural sources and their use affects the environment. Some resources are renewable over time, others are not.
ESS3.C Human Impact on Earth systems. Societal activities have had major effects on the land, ocean, atmosphere, and even outer space. Societal activities can also help protect Earth’s resources and environments.
ESS3.D Global Climate Change. If Earth’s global mean temperature continues to rise, the lives of humans and other organisms will be affected in many different ways.
LS2.B Cycles of Matter and Energy Transfer in Ecosystems. Matter cycles between the air and soil and among organisms as they live and die.
LS4.D Biodiversity & Humans. Populations of organisms live in a variety of habitats. Change in those habitats affects the organisms living there
PS3.A Definitions of Energy. Moving objects contain energy. The faster the object moves, the more energy it has. Energy can be moved from place to place by moving objects, or through sound, light, or electrical currents. Energy can be converted from one form to another form.
PS3.B Conservation of Energy and Energy Transfer. Moving objects contain energy. The faster the object moves, the more energy it has. Energy can be moved from place to place by moving objects, or through sound, light, or electrical currents. Energy can be converted from one form to another form.
PS3.D Energy in Chemical Process and Everyday Life. Energy can be “produced,” “used,” or “released” by converting stored energy. Plants capture energy from sunlight, which can later be used as fuel or food.
Grades 6–8
ESS3.A Natural Resources. Humans depend on Earth’s land, ocean, atmosphere, and biosphere for different resources, many of which are limited or not renewable. Resources are distributed unevenly around the planet as a result of past geologic processes
ESS3.C Human Impact on Earth systems. Human activities have altered the biosphere, sometimes damaging it, although changes to environments can have different impacts for different living things. Activities and technologies can be engineered to reduce people’s impacts on Earth.
ESS3.D Global Climate Change. Human activities affect global warming. Decisions to reduce the impact of global warming depend on understanding climate science, engineering capabilities, and social dynamics.
LS2.B Cycles of Matter and Energy Transfer in Ecosystems. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem. Food webs model how matter and energy are transferred among producers, consumers, and decomposers as the three groups interact within an ecosystem.
LS4.D Biodiversity & Humans. Changes in biodiversity can influence humans’ resources and ecosystem services they rely on.
PS1.B Chemical Reactions. Reacting substances rearrange to form different molecules, but the number of atoms is conserved. Some reactions release energy and others absorb energy.
PS3.A Definitions of Energy. Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.
PS3.B Conservation of Energy and Energy Transfer. Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.
PS3.D Energy in Chemical Process and Everyday Life. Sunlight is captured by plants and used in a reaction to produce sugar molecules, which can be reversed by burning those molecules to release energy
PS4.B Electromagnetic Radiation. The construct of a wave is used to model how light interacts with objects.
Grades 9–12
ESS3.A Natural Resources. Resource availability has guided the development of human society and use of natural resources has associated costs, risks, and benefits.
ESS3.C Human Impact on Earth systems. Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources, including the development of technologies that produce less pollution and waste and that preclude ecosystem degradation.
ESS3.D Global Climate Change. Global climate models used to predict changes continue to be improved, although discoveries about the global climate system are ongoing and continually needed.
LS2.B Cycles of Matter and Energy Transfer in Ecosystems. Photosynthesis and cellular respiration provide most of the energy for life processes. Only a fraction of matter consumed at the lower level of a food web is transferred up, resulting in fewer organisms at higher levels. At each link in an ecosystem elements are combined in different ways and matter and energy are conserved. Photosynthesis and cellular respiration are key components of the global carbon cycle.
LS4.D Biodiversity & Humans. Biodiversity is increased by formation of new species and reduced by extinction. Humans depend on biodiversity but also have adverse impacts on it. Sustaining biodiversity is essential to supporting life on Earth
PS1.B Chemical Reactions. Chemical processes are understood in terms of collisions of molecules, rearrangement of atoms, and changes in energy as determined by properties of elements involved.
PS3.A Definitions of Energy. The total energy within a system is conserved. Energy transfer within and between systems can be described and predicted in terms of energy associated with the motion or configuration of particles (objects).
PS3.B Conservation of Energy and Energy Transfer. Systems move toward stable states.
PS3.D Energy in Chemical Process and Everyday Life. Photosynthesis is the primary biological means of capturing radiation from the sun; energy cannot be destroyed, it can be converted to less useful forms.
PS4.A Wave Properties. The wavelength and frequency of a wave are related to one another by the speed of the wave, which depends on the type of wave and the medium through which it is passing. Waves can be used to transmit information and energy.
PS4.B Electromagnetic Radiation. Both an electromagnetic wave model and a photon model explain features of electromagnetic radiation broadly and describe common applications of electromagnetic radiation.
Data Source
Permalink to Data SourceNational Renewable Energy Laboratory, NOAA, NASA