Drought Risk - Real-time
Details
Permalink to Details- Added to the Catalog
- Available for
- SOS
- Explorer
- Categories
- Air: Weather
- Land: Water
- Keywords
- Drought
- Land
- Severe Weather
- Vegetation
- Water
Description
Permalink to DescriptionSatellites can detect the difference between rock, grassland, and forests because these surfaces emit energy differently back into space. By measuring these differences and observing the patterns of vegetation --or its lack of growth--NOAA scientists can monitor how droughts are changing across the world through time.
This global drought risk composite is derived from datasets developed by NOAA from measurements on the Visible-Infrared Imager/Radiometer Suite, or VIIRS, onboard the NPP satellite. By monitoring vegetation health, moisture and thermal conditions, scientists are able to identify areas that are considered to be vegetatively stressed due to drought. An important note is that the drought imagery is based solely on the analysis of vegetation health and stress, not soil moisture conditions. But this index serves as a reliable proxy measurement for drought worldwide. Areas of desert and snow cover are not included in the analysis. Yellow areas indicate areas under moderate drought conditions; red indicates areas experiencing extreme drought conditions. Other VIIRS datasets include Nighttime Lights, Vegetation Real-time, Fires - Real-time and Earth in True Color (daily) - Real-time.
Next Generation Science Standards
Permalink to Next Generation Science StandardsCross-cutting Concepts
Permalink to Cross-cutting ConceptsGrades K–2
C1 Patterns. Children recognize that patterns in the natural and human designed world can be observed, used to describe phenomena, and used as evidence
C2 Cause and Effect. Students learn that events have causes that generate observable patterns. They design simple tests to gather evidence to support or refute their own ideas about causes.
C7 Stability and Change. Students observe some things stay the same while other things change, and things may change slowly or rapidly.
Grades 3–5
C1 Patterns. Students identify similarities and differences in order to sort and classify natural objects and designed products. They identify patterns related to time, including simple rates of change and cycles, and to use these patterns to make predictions.
C4 Systems and System Models. Students understand that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot. They can also describe a system in terms of its components and their interactions.
C7 Stability and Change. Students measure change in terms of differences over time, and observe that change may occur at different rates. Students learn some systems appear stable, but over long periods of time they will eventually change.
Grades 6–8
C4 Systems and System Models. Students can understand that systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. They can use models to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. They can also learn that models are limited in that they only represent certain aspects of the system under study.
C7 Stability and Change. Students explain stability and change in natural or designed systems by examining changes over time, and considering forces at different scales, including the atomic scale. Students learn changes in one part of a system might cause large changes in another part, systems in dynamic equilibrium are stable due to a balance of feedback mechanisms, and stability might be disturbed by either sudden events or gradual changes that accumulate over time
Grades 9–12
C7 Stability and Change. Students understand much of science deals with constructing explanations of how things change and how they remain stable. They quantify and model changes in systems over very short or very long periods of time. They see some changes are irreversible, and negative feedback can stabilize a system, while positive feedback can destabilize it. They recognize systems can be designed for greater or lesser stability
Disciplinary Core Ideas
Permalink to Disciplinary Core IdeasGrades K–2
ESS2.C The Roles of Water in Earth's Processes. Water is found in many types of places and in different forms on Earth
ESS2.D Weather & Climate. Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region and time. People record weather patterns over time
ESS2.E Biogeology. Plants and animals can change their local environment.
ESS3.A Natural Resources. Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do.
ESS3.B Natural Hazards. In a region, some kinds of severe weather are more likely than others. Forecasts allow communities to prepare for severe weather.
LS1.C Organization for Energy Flow and Matter in Organisms. Animals obtain food they need from plants or other animals. Plants need water and light.
LS2.A Interdependent Relationships in Ecosystems. Plants depend on water and light to grow, and also depend on animals for pollination or to move their seeds around.
LS2.C Ecosystem Dynamics, Functioning and Resilience. When the environment changes some organisms survive and reproduce, some move to new locations, some move into the transformed environment, and some die.
Grades 3–5
ESS2.C The Roles of Water in Earth's Processes. Most of Earth’s water is in the ocean and much of the Earth’s fresh water is in glaciers or underground.
ESS2.D Weather & Climate. Climate describes patterns of typical weather conditions over different scales and variations. Historical weather patterns can be analyzed so that they can make predictions about what kind of weather might happen next.
ESS2.E Biogeology. Living things can affect the physical characteristics of their environment.
ESS3.A Natural Resources. Energy and fuels humans use are derived from natural sources and their use affects the environment. Some resources are renewable over time, others are not.
ESS3.B Natural Hazards. A variety of hazards result from natural processes; humans cannot eliminate hazards but can reduce their impacts.
LS1.C Organization for Energy Flow and Matter in Organisms. Food provides animals with the materials and energy they need for body repair, growth, warmth, and motion. Plants acquire material for growth chiefly from air, water, and process matter and obtain energy from sunlight, which is used to maintain conditions necessary for survival.
LS2.A Interdependent Relationships in Ecosystems. The food of almost any animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants, while decomposers restore some materials back to the soil.
LS2.C Ecosystem Dynamics, Functioning and Resilience. When the environment changes some organisms survive and reproduce, some move to new locations, some move into the transformed environment, and some die.
Grades 6–8
ESS2.C The Roles of Water in Earth's Processes. Water cycles among land, ocean, and atmosphere, and is propelled by sunlight and gravity. Density variations of sea water drive interconnected ocean currents. Water movement causes weathering and erosion, changing landscape features.
ESS2.D Weather & Climate. Complex interactions determine local weather patterns and influence climate, including the role of the ocean.
ESS2.E Biogeology. Evolution is shaped by Earth’s varying geological conditions. Sudden changes in conditions (e.g., meteor impacts, major volcanic eruptions) have caused mass extinctions, but these changes, as well as more gradual ones, have ultimately allowed other life forms to flourish, which have in turn changed the rates of weathering and erosion of land surfaces, altered the composition of Earth’s soils and atmosphere, and affected the distribution of water in the hydrosphere.
ESS3.A Natural Resources. Humans depend on Earth’s land, ocean, atmosphere, and biosphere for different resources, many of which are limited or not renewable. Resources are distributed unevenly around the planet as a result of past geologic processes
ESS3.B Natural Hazards. Mapping the history of natural hazards in a region and understanding related geological forces can help forecast the locations and likelihoods of future events, such as volcanic eruptions, earthquakes and severe weather.
LS2.A Interdependent Relationships in Ecosystems. Organisms and populations are dependent on their environmental interactions both with other living things and with nonliving factors, any of which can limit their growth. Competitive, predatory, and mutually beneficial interactions vary across ecosystems but the patterns are shared.
Grades 9–12
ESS2.C The Roles of Water in Earth's Processes. The planet’s dynamics are greatly influenced by water’s unique chemical and physical properties.
ESS2.D Weather & Climate. The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors
ESS2.E Biogeology. The biosphere and Earth’s other systems have many interconnections that cause a continual co-evolution of Earth’s surface and life on it
ESS3.A Natural Resources. Resource availability has guided the development of human society and use of natural resources has associated costs, risks, and benefits.
ESS3.B Natural Hazards. Natural hazards and other geological events have shaped the course of human history at local, regional, and global scales. Human activities can contribute to the frequency and intensity of some natural hazards.
LS2.A Interdependent Relationships in Ecosystems. Ecosystems have carrying capacities resulting from biotic and abiotic factors. The fundamental tension between resource availability and organism populations affects the abundance of species in any given ecosystem.
LS2.C Ecosystem Dynamics, Functioning and Resilience. If a biological or physical disturbance to an ecosystem occurs, including one induced by human activity, the ecosystem may return to its more or less original state or become a very different ecosystem, depending on the complex set of interactions within the ecosystem
Notable Features
Permalink to Notable Features- Location and intensity of drought changes with the seasons
- Drought Risk is updated weekly
Data Source
Permalink to Data SourceNOAA/NASA Suomi NPP